Which of the following substances is produced by the action of lipoxygenase on arachidonic acid, is a potent chemotactic factor for neutrophils, and causes aggregation and adhesion of leukocytes?
ExplanationProducts of arachidonic acid (AA) metabolism are involved extensively in inflammation. In this pathway, AA is broken down into leukotrienes (vasoconstrictors) and prostaglandins (vasodilators). AA is a polyunsaturated fatty acid that is normally found esterified in plasma membrane phospholipids. It is released by the activation of phospholipases, such as phospholipase A2. Cyclooxygenase transforms AA into the prostaglandin endoperoxide PGG2, which is then converted into PGH2 and subsequently into three products: thromboxane A2 (TxA2), prostacyclin (PGI2), and the more stable prostaglandins PGE2, PGF2, and PGD2. Thromboxane, found in platelets, is a potent platelet aggregator and blood vessel constrictor. In contrast, prostacyclin, which is found in the walls of blood vessels, is a potent inhibitor of platelet aggregation and is also a vasodilator. Prostaglandin E and prostacyclin probably account for most of the vasodilation that is seen in inflammation. The prostaglandins are also involved in producing pain and fever in inflammation. In contrast to cyclooxygenase, lipoxygenase converts AA into hydroperoxyl derivatives, namely 12-HPETE in platelets and 15-HPETE in leukocytes. 5-HPETE gives rise to HETE and the leukotrienes (Lts). While many substances can be chemotactic, few are known to be as potent as several of the leukotrienes. Leukotriene B4 is a potent chemotactic agent that also causes aggregation
and adhesion of leukocytes. Additionally, leukotrienes C4, D4, and E4 cause increased vascular permeability, bronchoconstriction, and vasoconstriction. Other chemotactic factors for neutrophils include C5a and IL-8, but these substances are not formed from AA.